Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			

Sequential Selection, Saliency and Scanpaths

Ramin Fahimi

Advisor: Prof Neil Bruce

University of Manitoba Department of Computer Science

20 Nov 2018

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			

Outline

1 Introduction

2 Background

- Visual attention
- Computational modelings
- Inter-observer Congruency
- 3 Sequential analysis
 - Introduction
 - Analysis
 - The benchmark

4 Applications

- Stimuli effect
- Resolution
- Eye-tracking proxies
- Saliency in time

5 Conclusion

- Summary
- Limitations & future work

6 References

Introduction	Background	Sequential analysis	Applications	Conclusion	References
•	000	000			
Attention					

- Humans and animals have a significant but limited amount of processing resources.
- Attention is the process of selectively concentrating on some portion of available information
- Critical to Information Reduction and filtering.
- Visual attention is a form of attention that allows humans and animals to control and allocate their limited visual processing resources
- Sequences of successive eye movements during scene exploration are described as visual scanpaths

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Visual attention					

Visual attention - Fixation and saccades

FIGURE 1 – Scanpaths and salient regions – the ordering reveals a compelling difference among observers, even when over location of fixations are consistent.

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	• 0 0	000			
Visual attention					
eye-move	ements				

FIGURE 2 - Inside humans eyes - Fovea [1]

Saccade	voluntary fast & ballistic movements
Vestibular-Ocular Reflex	compensatory changes in eye position as head moves
Smooth Pursuit	voluntary tracking of moving stimuli
Nystagmus	Reset by a primitive saccade similar to reaching the orbit limit
Optokinetic Nystagmus	low-frequency rotations at constant velocity.
Vergence	Coordinated movements - converging or diverging
Torsion	Coordinated rotation, dependent on head tilt and eye elevation.

Ramin Fahimi University of Manitoba

Saliency and Scanpaths

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Visual attention					
datasets					

Name	Size	Observer	duration	Fixations	Туре
OSIE [22]	700	15	3	~	3
CROWD [14]	500	16	5	~	3
PASCAL-S [17]	850	12	2	\checkmark	3
CAT2000 [4]	2000	18	5	~	3
FIGRIM [5]	2787	15	2	~	3
LOWRES [22]	168+25	15	3	~	3
SALICON [13]	10000	60	-	\checkmark	Ĩ

TABLE 2 – Available Datasets for training & evaluating models of gaze behaviour. Note that this list derives from careful consideration of all available datasets, their duration, and modifications in how information is extracted to engage in both spatial and temporal analysis.

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational modelings					

FIGURE 3 - Saliency (static) models vs. Saccadic models

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational mode	elings				
Statio					
Static					

Ramin Fahimi University of Manitoba

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational mod	lelings				

Static metrics

	AUC	sAUC	SIM	CC	KL	IG	NSS	EMD
Implementation								
Bounded	~	√	✓	✓				
Location-based, parameter-free	~	✓				√	~	
Local computations, differentiable			√	√	√	✓	√	
Symmetric			~	✓				✓
Behavior								
Invariant to monotonic transformations	✓	√						
Invariant to linear transformations (contrast)	~	√		✓			✓	
Requires special treatment of center bias		√				✓		
Most affected by false negatives			1		✓	√		
Scales with spatial distance								1

TABLE 3 - A summary of static metrics for comparing gaze patterns (by Bylinskii et al. [6])

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational model	ings				
Sequentia	al				

- tries to predict Position, order, shape, duration
- Started by scanpath theory anad koch model.
- continued with many more (within between)
- Applications involves all the existing + high focus on active camera control

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational mode	lings				

Sequential Metrics

	Metric	abrv	Quantization	Target
1	Euclidean distance	EUC	Direct	Position
2	Mannan distance [18]	MAN	Direct	Position
3	Eyeanalysis [19]	EYE	Direct	Position
4	Levenshtein distance [20]	LEV	Grid	Position, Order
5	ScanMatch [7]	SMT	Grid/Temporal	Position,Order,Duration
6	Hausdorff distance [12]	HAU	Direct	Position
7	Frechet distance [9]	FRE	Direct	Position, Order
8	Dynamic time warp [3]	DTW	Direct	Position, Order
9	Time delay embedding [21]	TDE	Direct	Position
10	MultiMatch Shape [8]	MM_S	Direct	Shape
11	MultiMatch Direction(angualr)[8]	MM_A	Direct	Direction
12	MultiMatch Length [8]	MM_L	Direct	Length
13	MultiMatch Position [8]	MM_P	Direct	Position
14	MultiMatch Duration [8]	MM_D	Direct	Duration
15	Recurrence [2]	REC	Radius	Position
16	Determinism [2]	DET	Radius	Fixation Trajectories
17	Laminarity [2]	LAM	Radius	Fixation Persistence
18	Corm [2]	COR	Radius	Leading/Following

TABLE 4 – Common metrics for evaluation of Scanpaths.

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational modeli	ings				

Sequential metrics - commons

Given two scanpaths P and Q with lengths N and M :

- $\blacksquare P = (p_1, p_2, ..., p_n)$
- $Q = (q_1, q_2, ..., q_m)$
- $\blacksquare d_{i,j} = D_{EUC}(P_i, Q_j)$
- Stimuli resolution (W, H)

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational modelings					

Euclidean, Mannan, Eyeanalysis

Euclidean distance

$$D_{EUC}(P,Q) = \sum_{i=1}^{\min(N,M)} \sqrt{(X_P - X_Q)^2 + (Y_P - Y_Q)^2}$$

Mannan distance

$$D_{MAN} = [1 - \frac{D}{D_r}] * 100$$

$$D^{2} = \frac{N*\sum_{j=1}^{M}\min \sigma_{i,j}^{2} + M*\sum_{i=1}^{N}\min \sigma_{i,j}^{2}}{2*N*M*(W^{2}+H^{2})}$$

Eyeanalysis

$$D_{EYE} = \frac{(\sum_{i=1}^{M} \min d_{i,j}^{2} + \sum_{j=1}^{N} \min d_{i,j}^{2})}{\max(N,M)}$$

Ramin Fahimi University of Manitoba

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational mod	elings				
Levensht	ein				

example : kitten vs sitting

kitten \rightarrow sitten (substitution of "s" for "k") sitten \rightarrow sittin (substitution of "i" for "e") sittin \rightarrow sitting (insertion of "g" at the end)

Levenshtein

$$d_{A,B}(i,j) = \begin{cases} \max(a,b) & \text{if } \min(i,j) \\ \\ min \begin{cases} d_{A,B}(i-1,j)+1 & \\ \\ d_{A,B}(i,j-1)+1 & \\ \\ d_{A,B}(i-1,j-1)+1_{(a_i \neq b_j)} \end{cases} & \text{otherwise} \end{cases}$$

= 0

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	0.00	000			
Computational modelings					

ScanMatch

FIGURE 5 – a) Visualization of scanpath record in c. b) pre-processing stage for transforming scanpaths to strings. "eDeEeDfDdGcFbDcBc" without considering duration and" eDeDeEeEeDeDfDdGcFbDbDbDcBcBcBc cEcE" when T=100ms.

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational mode	lings				

String-based problems

Close fixations could fall into different bins

fixations in a specific bin are treated equally

U	v	w	х	Y
Р	Q	R	S	т
к	L	м (• N	0
F	.	н	I	J
A	В	С	D	E

FIGURE 6

Introduction	Background	Sequential analysis	Applications	Conclusion	References		
	000	000					
Computational modelings							
Dynamic time warping I							

Algorithm 1 Dynamic Time Warp
procedure $DTW(P,Q)$
$D \leftarrow array[0n, 0m]$
$D[:,0] \leftarrow infinity$
$D[0:] \leftarrow in finity$
$D[0, .] \leftarrow mj miny$
$D[0,0] \leftarrow 0$
[-/-]
for $i \leftarrow 1 : N$ do
for $i \leftarrow 1$: M do
$D[i,j] \leftarrow minimum(D[i-1,j], D[i,j-1], D[i-1,j-1])$
$D[i, i] \leftarrow D[i, i] + d(P[i], Q[i])$
-[-,5] - [-,5](-[-],-0[5])
end for
end for

returnD[n,m]

end procedure

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational mode	elings				

Dynamic time warping II

FIGURE 7 - [10]

Introduction	Background	Sequential analysis	Applications	Conclusion	References	
	000	000				
Computational mod	elings					
Frechet c	listance					

Frechet Distance

$$D_{FRE(A,B)} = \inf_{\alpha,\beta} \max_{t \in [0,1]} \left\{ d\left(P(\alpha(t)), Q(\beta(t))\right) \right\}$$
(1)

FIGURE 8 - [10]

Introduction	Background	Sequential analysis	Applications	Conclusion	References	
	000	000				
Computational modeli	ings					

Hausdorff distance & Time delay embedding (TDE)

Hausdorff Distance

$$D_{HAU}(P,Q) = max(h(P,Q),h(Q,P))$$
(2)
$$h(A,B) = \max_{a \in P} \min_{b \in Q} ||a - b||$$

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational mode	elings				
MultiMato	ch				

- Simplification
 - Direction
 - Length
- Alignment : Dijkstra algorithm
- 3 Calculate distance
 - Shape
 - Length
 - Direction
 - Position
 - Duration

FIGURE 10 – Amplitude-based (dashed circles) and direction-based (dashed arrow) clustering [8, 11]

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational mod	elings				
5					
Recurren	ice				

FIGURE 11 – Recurrence matrix based on euclidean distance with $\rho = 2 * 24$ (visual angle)

$$r_{P,Q}(i,j) = \begin{cases} 1 & d(P[i],Q[j]) < \rho \\ 0 & otherwise \end{cases} \qquad \qquad D_{REC}(P,Q) = 100 * \frac{C}{N^2}$$

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Computational mod	elings				

Determinism, Laminarity, CORM

$D_{LAM}(P,Q) = 100 * \frac{|H_L| + |V_L|}{2 * C}$

DET

LAM

$$D_{DET}(P,Q) = 100 * \frac{|D_L|}{R}$$

CORM

$$D_{COR}(P,Q) = 100 * \frac{\sum_{i=1}^{\min(M,N)\min(M,N)} ((j-i)r_{ij})}{(\min(M,N)-1)C}$$

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Inter-observer Congruency					

Inter-observer Congruency (IOC)

FIGURE 12 – Visualization of 15 observers viewing the same image revealing differences in viewing. Eye tracking data is subjective and the extent of agreement is measured as IOC.

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Introduction					

What can a similarity metric do?

A similarity metric should have the capability to weigh differences and similarities among models

- Detecting differences between predefined set
- Supporting scanpath theory
- Diagnostic use
- 4 Data-driven clustering

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Introduction					

What makes a metric suitable and what's missing?

- Should be capable of measuring distances between sequences of fixations.
- 2 Should have an interpretation that is intuitive
- Should be able to effectively capture the order, position, duration of fixations and shape of scanpath[8].
- Should provide a level of sensitivity that allows for reasonable separation of models that produce good vs. poor sequences
- 5 Should not consist only of coarse grained saccade or fixation statistics

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Analysis					
•					

Area under intersection

FIGURE 13 - Intersection

$$P(X_1 > c) + P(X_2 < c) = 1 - F_1(c) + F_2(c)$$

= $1 - \frac{1}{2} \operatorname{erf} \left(\frac{c - \mu_1}{\sqrt{2}\sigma_1} \right) + \frac{1}{2} \operatorname{erf} \left(\frac{c - \mu_2}{\sqrt{2}\sigma_2} \right)$

where C can be calculated by :

$$\mathbf{C} = \frac{\mu_2 \sigma_1^2 - \sigma_2 \left(\mu_1 \sigma_2 + \sigma_1 \sqrt{(\mu_1 - \mu_2)^2 + 2\left(\sigma_1^2 - \sigma_2^2\right) \log\left(\frac{\sigma_1}{\sigma_2}\right)}\right)}{\sigma_1^2 - \sigma_2^2}$$

Introduction	Background	Sequential analysis	Applications	Conclusion	References	
	000	000				
Analysis						
Noise						

FIGURE 14 - Sensitivity to increasing number of imposter samples in measuring inter-observer distances.

Introduction	Background	Sequential analysis	Applications	Conclusion	References	
	000	000				
Analysis						
Intercent						
Intersecti	ON					

	EUC	MAN	EYE	LEV	SMT	HAU	FRE	DTW	TDE	REC	DET	LAM	CORM	MM_S	MM_A	MM_L	MM_P
MEAN	0.82	1.00	0.29	0.61	1.00	0.71	0.90	0.60	0.58	1.00	0.75	1.00	0.90	1.00	1.00	1.00	1.00
SPP	0.67	1.00	0.15	0.49	1.00	0.46	0.71	0.37	0.46	1.00	0.46	1.00	1.00	1.00	0.98	1.00	1.00

TABLE 5 – Area of intersection for two distributions. One is based on distances of observers viewing the same image, and the other is between images. In practice, a strong metric should elicit a very different distribution.

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Analysis					

FIGURE 15 – A depiction of different conditions that may reveal sensitivity of sequential metrics. These may happen by virtue of small differences in viewing patterns, noise in data capture, or the overall stochastic nature of the process. (Derived from [8])

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Analysis					

Spatial Noise

FIGURE 16 – Spatial noise : Each fixation has been moved according to a random sample from a Gaussian distribution with σ according to degree of visual angle

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Analysis					

Spatial offset

FIGURE 17 – Spatial offset : all of fixation have been moved according to a random sample from a Gaussian distribution with σ according to degree of visual angle

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Analysis					

FIGURE 18 - Ordinal offset : average distance when scanpaths have temporally shifted in clockwise

Introduction	Background	Sequential analysis	Applications	Conclusion	References	
	000	000				
Analysis						

Reverse ordinal offset

FIGURE 19 - Reverse Ordinal offset : average distance when scanpaths have temporally shifted in counterclockwise

Introduction O	Background OOO	Sequential analysis	Applications	Conclusion OO	References O
Analysis					
Rotation					

FIGURE 20

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Analysis					
Similaritie	es in ranking				

FIGURE 21 - Base scanpath

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Analysis					

FIGURE 22 - Base scanpath

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Analysis					

FIGURE 23 - Base scanpath

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
Analysis					

Introduction	Background	Sequential analysis	Applications	Conclusion	References		
	000	000					
The benchmark							

The benchmark

Sequential bechmark

Model	EUC	MAN	EYE	LEV	SMT	HAU	FRE	DTW	TDE	REC	DET	LAM	CORM	MM_S	MM_A	MM_L	MM_P
AIM	831.78	23.27	168.98	15.35	0.76	242.37	386.23	2032.22	113.64	4.33	0.66	8.27	40.86	0.84	0.67	0.86	0.77
AWS	828.08	23.48	164.34	15.11	0.76	244.82	383.03	2010.82	113.07	4.90	0.83	9.25	40.15	0.84	0.67	0.86	0.77
CAS	761.36	24.29	167.34	15.19	0.77	230.77	353.70	1910.34	102.37	4.63	0.93	7.94	41.36	0.85	0.66	0.88	0.79
CVS	898.08	1.83	235.55	16.07	0.76	291.37	413.44	2353.33	128.56	2.70	0.45	6.42	42.24	0.84	0.67	0.86	0.76
DVA	847.99	19.93	176.01	15.48	0.76	251.78	392.54	2088.77	116.76	4.13	0.70	8.35	39.27	0.84	0.67	0.86	0.76
GBVS	707.28	32.96	147.79	14.85	0.77	202.24	323.15	1730.56	94.50	5.64	1.13	8.41	41.84	0.86	0.67	0.89	0.81
IKN	777.06	25.81	164.95	15.20	0.77	228.45	358.76	1913.76	105.72	4.47	0.75	7.73	41.67	0.85	0.67	0.88	0.79
IMSIG	796.70	23.28	166.60	15.12	0.77	236.84	370.47	1959.85	105.25	5.01	0.94	8.72	40.49	0.85	0.67	0.87	0.78
QSS	909.77	9.17	200.28	15.77	0.76	287.47	424.04	2267.87	130.19	3.77	0.65	8.09	40.51	0.84	0.67	0.86	0.76
SSR	874.44	15.22	188.71	15.54	0.76	262.36	408.29	2159.36	120.03	4.16	0.76	7.98	40.24	0.84	0.67	0.87	0.77
SUN	850.72	16.39	185.09	15.59	0.76	256.88	393.81	2117.18	117.92	3.83	0.69	8.13	40.05	0.84	0.67	0.86	0.76
cG	599.08	18.56	187.09	15.11	0.78	220.50	286.53	1693.72	87.20	4.46	1.14	7.03	45.62	0.85	0.49	0.85	0.81
SAM-VGG	728.45	47.33	106.02	14.03	0.77	187.48	340.53	1600.90	94.71	6.10	1.06	10.60	39.63	0.86	0.70	0.88	0.82
OpenSalicon	730.94	41.46	120.34	14.19	0.77	200.00	348.58	1639.66	91.99	6.57	1.11	10.83	38.31	0.85	0.69	0.88	0.82
SALGAN	1112.63	14.12	213.76	15.66	0.76	424.14	555.35	2611.46	171.14	4.92	0.81	11.04	33.30	0.83	0.69	0.83	0.77
PathGAN	1218.31	80.62	443.05	17.52	0.73	414.35	552.11	3711.61	173.52	0.17	0.17	8.10	32.01	0.67	0.48	0.61	0.60
LeMeur	427.38	109.58	116.62	12.48	0.57	128.85	182.75	1246.36	56.40	0.01	0.00	0.00	12.18	0.66	0.12	0.63	0.50

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
The benchmark					
Scanpath	Plausibility				

- Consider a scene with k regions that tend to be gazed at
- When comparing, should we take average?
- If N observers produce $\approx M$ different strategies for viewing an image, and a model is successful in reproducing one of these strategies, this still implies that $\frac{M-1}{M}$ of instances included in the metric are in some sense noise

Introduction	Background	Sequential analysis	Applications	Conclusion	References O
The benchmark					-
SPP resu	lts				

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000	0000	00	
The benchmark					
SPP result	:s				

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			
The benchmark					

Applications

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000	0000		
Stimuli effect					
0.1 11 11					

Stimuli effect

Inter observer results per category for CAT2000 - std 11

	EUC	MAN	EYE	LEV	SMT	HAU	FRE	DTW	TDE	REC	DET	LAM	CORM	MM_S	MM_A	MM_L	MM_P
Affective	1554.69	32.17	200.55	30.73	0.40	429.68	571.34	5638.05	113.33	4.00	2.75	13.08	34.18	0.90	0.70	0.91	0.86
BlackWhite	1468.51	31.68	210.74	30.06	0.39	431.53	558.50	5470.13	116.43	3.59	2.34	11.85	34.55	0.90	0.70	0.91	0.86
Fractal	1632.23	26.11	227.07	31.16	0.37	452.68	598.80	6069.34	127.71	3.16	2.10	11.34	34.82	0.89	0.70	0.90	0.84
Inverted	1703.50	25.84	225.79	31.94	0.37	442.19	595.13	6287.62	129.76	2.58	1.91	10.63	34.67	0.89	0.71	0.91	0.84
Line Drawing	1683.26	25.44	229.55	32.54	0.35	441.17	593.74	6444.01	133.39	2.60	1.75	10.56	34.89	0.89	0.69	0.91	0.84
Noisy	1208.06	33.65	220.39	27.44	0.36	440.41	536.13	4771.37	116.06	4.22	2.06	11.79	36.71	0.89	0.65	0.90	0.86
Outdoor	1513.83	30.19	212.57	30.72	0.38	438.72	581.14	5697.78	118.53	3.50	2.21	11.38	34.89	0.89	0.70	0.90	0.85
Pattern	1375.97	29.68	223.07	29.57	0.37	445.03	558.78	5400.19	120.59	3.66	2.03	11.42	35.92	0.89	0.67	0.91	0.85
Satellite	1547.59	26.45	231.41	30.17	0.36	454.31	588.80	5813.68	128.96	3.06	1.96	11.11	34.96	0.89	0.69	0.91	0.85
Social	1463.49	37.10	187.82	30.25	0.41	396.76	536.32	5327.27	107.14	4.09	2.73	13.00	34.43	0.90	0.71	0.92	0.87

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000	0000		
Resolution					
Resolutio	on I				

FIGURE 25 – Inter observer score for different resolutions of an image. Results have been normalized normalized by the inter-observer distance of the base resolution.

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000	0000		
Resolution					
Rocolutio	n II				
nesolulic					

Consistency of Fixations per resolution

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000	0000		
Eye-tracking proxies					

Eye-tracking vs mouse-tracking

	EUC	MAN	EYE	LEV	SMT	HAU	FRE	DTW	TDE	REC	DET	LAM	CORM	MM_S	MM_A	MM_L	MM_P
mouse-mouse	703.29	27.26	136.40	10.75	0.77	179.95	314.08	1446.57	89.85	4.56	1.27	0.87	34.60	0.71	0.62	0.73	0.66
mouse-mouse spp	432.03	20.81	83.52	7.89	0.72	94.09	188.37	906.49	58.87	0.06	0.00	0.00	12.35	0.62	0.41	0.61	0.54
Mouse-eye	824.88	8.72	213.97	15.97	0.76	256.13	370.25	2145.35	121.03	6.45	23.08	17.64	44.92	0.83	0.66	0.85	0.76
Mouse-eye SPP	591.79	49.19	143.45	13.26	0.74	169.53	247.31	1528.37	85.19	4.10	22.67	13.37	18.58	0.74	0.42	0.70	0.64

TABLE 7 – Mouse tracking vs Eye tracking data on OSIE dataset. This shows a remarkable difference in considering within and between class distances, and provides strong evidence for the view that mouse-tracking proxies can't help saccadic models as effectively as static models.

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000	0000		
Saliency in time					

Saliency in time

FIGURE 27 – Inter observer distance by quantizing according to duration of viewing and normalized by maximum IOC distance pr metric

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000		•0	
Summary					
Summary					

- Review of existing dataset
- Comprehensive study of sequential metrics
- Careful and empirical study of metrics
- Making the first benchmark of saccadic models
- Review of possible applicable areas

Introduction	Background	Sequential analysis	Applications	Conclusion	References		
	000	000		00			
Limitations & future	work						
	0.1.1						

Limitations & future work

- Top-down vs bottom up
- Memory

Emotion

- Human vs Machine
- Revisiting the literature

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000		0.0	
Limitations & future	work				
Thonk vo					
	10				

Thank you!

https://github.com/rAm1n/msc-thesis

O		OOO	0000	OO	References
Referer	nces I				
	American academy of https://www.aao.or	of ophthalmology. rg/, Sept. 2018.			
	N. C. Anderson, W. F Recurrence quantific Behavior Research I	Bischof, K. E. W. L ation analysis of eye Methods, 45(3) :842-	aidlaw, E. F. Risk movements. -856, Sep 2013.	.o, and A. Kingston	е.
	D. J. Berndt. Using dynamic time v In KDD workshop, vo	warping to find patte blume 10, pages 359	rns in time series –370. Seattle, W). 'A, 1994.	
	A. Borji and L. Itti. Cat2000 : A large sc arXiv preprint arXiv :	ale fixation dataset fo 1505.03581, 2015.	or boosting salier	ncy research.	
	Z. Bylinskii, P. Isola, Intrinsic and extrinsic Vision research, 116	C. Bainbridge, A. Tou effects on image m :165–178, 2015.	rralba, and A. Oli emorability.	va.	
	Z. Bylinskii, T. Judd, What do different eva IEEE transactions or	A. Oliva, A. Torralba aluation metrics tell un pattern analysis an	, and F. Durand. us about saliency d machine intellig	models? gence, 2018.	

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			•
Referenc	es II				
1101010110					

- F. Cristino, S. Mathôt, J. Theeuwes, and I. D. Gilchrist. Scanmatch : A novel method for comparing fixation sequences. Behavior research methods, 42(3) :692–700, 2010.
- R. Dewhurst, M. Nyström, H. Jarodzka, T. Foulsham, R. Johansson, and K. Holmqvist.

It depends on how you look at it : Scanpath comparison in multiple dimensions with multimatch, a vector-based approach.

Behavior research methods, 44(4) :1079–1100, 2012.

T. Eiter and H. Mannila. Computing discrete fréchet distance.

Technical report, Citeseer, 1994.

N. Guo, M. Ma, W. Xiong, L. Chen, and N. Jing. An efficient query algorithm for trajectory similarity based on fréchet distance threshold.

ISPRS International Journal of Geo-Information, 6(11):326, 2017.

O Introduction	Background OOO	Sequential analysis OOO	Applications 0000	Conclusion	References
Referer	nces III				
	K. Holmqvist, M. N J. Van de Weijer. <i>Eye tracking : A co</i> OUP Oxford, 2011.	yström, R. Andersson mprehensive guide to	, R. Dewhurst, H. methods and me	Jarodzka, and Pasures.	
	D. P. Huttenlocher, Comparing images <i>IEEE Transactions</i> 1993.	G. A. Klanderman, ar using the hausdorff c on pattern analysis ar	d W. J. Rucklidge listance. nd machine intelli). gence, 15(9) :850	I—863,
	M. Jiang, S. Huang Salicon : Saliency i In <i>Computer Vision</i> pages 1072–1080.	, J. Duan, and Q. Zha n context. <i>and Pattern Recogni</i> IEEE, 2015.	o. tion (CVPR), 201	5 IEEE Conference	ce on,
	M. Jiang, J. Xu, and Saliency in crowd. In European Confe	d Q. Zhao. rence on Computer V	<i>ision</i> , pages 17–3	32. Springer, 2014	4.
	T. Judd, F. Durand, Fixations on low re	and A. Torralba. solution images.			

Journal of Vision, 10(7) :142-142, 2010.

Introduction O	Background OOO	Sequential analysis O OO	Applications	Conclusion OO	References
	IV/				
Referen	nces IV				
	D. Kaspar. Application of direc PhD thesis, Master 2005.	<i>tional antennas in RF</i> s thesis, Swiss Feder	<i>-based indoor loc</i> ral Institute of Tecl	<i>alization systems</i> hnology Zurich (E	х. ЕТН),
	Y. Li, X. Hou, C. Ko The secrets of salie In <i>Proceedings of tu</i> <i>Recognition</i> , pages	ch, J. M. Rehg, and A ont object segmentation the IEEE Conference of 280–287, 2014.	a. L. Yuille. on. on Computer Visio	on and Pattern	
	S. K. Mannan, K. H The relationship be made during visual <i>Spatial vision</i> , 10(3	. Ruddock, and D. S. tween the locations o examination of briefly) :165–188, 1996.	Wooding. f spatial features a presented image	and those of fixat is.	ions
	S. Mathôt, F. Cristin A simple way to est Journal of Eye Mov	o, I. D. Gilchrist, and imate similarity betwe ement Research, 5(1	J. Theeuwes. een pairs of eye m), 2012.	ovement sequen	ces.
	C. M. Privitera and Algorithms for defin <i>IEEE Transactions</i> 2000.	L. W. Stark. ing visual regions-of- on pattern analysis a	interest : Compari nd machine intellig	son with eye fixa gence, 22(9) :970	tions.)–982,

Introduction	Background	Sequential analysis	Applications	Conclusion	References		
	000	000			•		
Referenc	ee V						

W. Wang, C. Chen, Y. Wang, T. Jiang, F. Fang, and Y. Yao. Simulating human saccadic scanpaths on natural images. In *Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on*, pages 441–448. IEEE, 2011.

J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao. Predicting human gaze beyond pixels. *Journal of vision*, 14(1) :28–28, 2014.

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			•

Frame Title

	EUC	MAN	EYE	LEV	SMT	HAU	FRE	DTW	TDE	REC	DET	LAM	CORM	MM_S	MM_A	MM_L	MM_P	MM_D
0	703.85	44.50	101.73	13.97	0.45	196.94	326.33	1559.30	76.91	24.34	8.02	26.48	39.39	0.86	0.69	0.89	0.83	0.50
1	711.85	41.39	110.30	14.18	0.43	201.49	328.95	1609.35	79.37	23.08	7.71	25.97	39.35	0.86	0.68	0.89	0.83	0.50
2	722.77	38.41	118.70	14.47	0.42	205.32	331.15	1666.83	82.14	21.79	7.43	25.45	39.31	0.86	0.68	0.89	0.82	0.50
3	730.13	35.13	127.61	14.74	0.41	209.79	333.05	1722.08	84.53	20.64	7.15	24.83	39.32	0.86	0.67	0.88	0.82	0.50
4	737.48	32.13	136.09	14.96	0.40	214.14	334.86	1771.37	86.98	19.32	6.81	24.29	39.27	0.86	0.67	0.88	0.82	0.50
5	744.68	29.01	144.46	15.21	0.38	218.35	336.20	1822.85	89.06	18.20	6.57	23.84	39.30	0.85	0.67	0.88	0.81	0.50
6	752.79	25.80	152.97	15.47	0.37	222.74	337.91	1877.78	91.14	17.17	6.35	23.32	39.31	0.85	0.66	0.88	0.81	0.50
7	759.13	22.99	161.08	15.72	0.36	225.95	338.95	1923.53	93.17	16.17	6.10	22.65	39.45	0.85	0.66	0.88	0.80	0.50
8	765.75	19.82	169.88	15.98	0.35	230.27	340.36	1975.00	95.57	15.17	5.80	21.91	39.94	0.85	0.65	0.88	0.80	0.50
9	772.88	16.74	178.57	16.16	0.33	234.68	342.07	2021.15	97.93	13.99	5.44	21.31	40.07	0.85	0.65	0.88	0.79	0.50
10	776.90	13.88	186.98	16.32	0.32	238.56	342.81	2059.89	99.91	12.83	5.02	20.55	40.41	0.85	0.65	0.87	0.79	0.50
11	785.33	10.89	195.21	16.58	0.31	242.51	345.37	2113.29	102.55	11.46	4.58	19.88	40.46	0.84	0.64	0.87	0.79	0.50
12	792.32	7.83	204.33	16.74	0.30	246.62	347.13	2159.77	105.23	10.06	4.14	19.09	40.66	0.84	0.64	0.87	0.78	0.50
13	795.56	5.03	212.60	16.93	0.28	249.84	346.87	2199.74	107.08	9.16	3.79	18.40	41.07	0.84	0.63	0.87	0.78	0.50
14	806.46	2.21	220.63	17.21	0.27	253.53	348.14	2251.63	109.64	7.97	3.40	17.55	41.43	0.84	0.63	0.87	0.77	0.50

Introduction		Ба О	ickgro	una			5e	querii SO	liai ari	aiysis			A C	ppilca	alions >				onciusio C		References
<u> </u>								~							·						
		FUC	MAN	EVE	LEV	SMT	MAU	FRE	orw	TOE	REC	DET	LAM	co _R 1	ms	MA	MMI	MA			
		1	1	-	-	-	-	-	- 1	- 1	1	-	1	1	-	1	-	-		L 1.0	
	EUC —	1.00	-0.15	0.30	0.40	-0.20	0.23	0.45	0.53	0.47	-0.16	0.10	-0.10	-0.12	-0.15	0.15	-0.09	-0.28			
	MAN -	-0.15	1.00	-0.34	-0.17	0.32	-0.36	-0.26	-0.26	-0.13	0.23	-0.07	0.05	0.20	0.12	0.04	0.19	0.23			
	EYE -	0.30	-0.34	1.00	0.37	-0.35	0.78	0.45	0.57	0.46	-0.28	0.27	-0.21	-0.20	-0.04	0.07	-0.08	-0.19		- 0.8	
		0.40	0 17	0.27	1.00	0.27	0.20	0.24	0.65	0.24	0.24	0.09	0 10	0 17	0.04	0.15	0.02	.0.09			
	LEV -	0.40	-0.17	0.37	1.00	-0.27	0.30	0.34	0.05	0.24	-0.24	0.09	-0.10	-0.17	0.04	0.15	0.05	-0.03			
	SMT —	-0.20	0.32	-0.35	-0.27	1.00	-0.30	-0.26	-0.30	-0.40	0.26	-0.23	0.26	0.10	0.15	0.08	0.12	0.29		- 0.6	
	HAU —	0.23	-0.36	0.78	0.30	-0.30	1.00	0.45	0.48	0.32	-0.23	0.21	-0.11	-0.18	-0.05	0.03	-0.10	-0.18			
	FRE -	0.45	-0.26	0.45	0.34	-0.26	0.45	1.00	0.75	0.42	-0.13	0.13	-0.07	-0.05	-0.13	0.12	-0.10	-0.25			
																				0.4	
	DTW -	0.53	-0.26	0.57	0.65	-0.30	0.48	0.75	1.00	0.47	-0.23	0.13	-0.13	-0.12	-0.03	0.18	-0.05	-0.20			
	TDE -	0.47	-0.13	0.46	0.24	-0.40	0.32	0.42	0.47	1.00	-0.18	0.13	-0.26	-0.02	-0.07	0.13	-0.05	-0.20			
	REC -	-0.16	0.23	-0.28	-0.24	0.26	-0.23	-0.13	-0.23	-0.18	1.00	0.24	0.18	0.62	-0.01	-0.05	0.01	0.09			
	DET	0 10	.0.07	0.27	0.09	0.22	0.21	0.12	0 12	0.12	0.24	1.00	0.06	0.05	0.07	.0.04	.0.02	0.14		Г ^{0.2}	
	DEI -	0.10	-0.07	0.27	0.09	-0.23	0.21	0.15	0.13	0.15	0.24	1.00	0.00	0.05	-0.07	-0.04	-0.05	-0.14			
	LAM -	-0.10	0.05	-0.21	-0.10	0.26	-0.11	-0.07	-0.13	-0.26	0.18	0.06	1.00	0.01	-0.06	-0.05	-0.01	0.02			
	cor –	-0.12	0.20	-0.20	-0.17	0.10	-0.18	-0.05	-0.12	-0.02	0.62	0.05	0.01	1.00	0.01	-0.03	0.02	0.08		- 0.0	
	MM S —	-0.15	0.12	-0.04	0.04	0.15	-0.05	-0.13	-0.03	-0.07	-0.01	-0.07	-0.06	0.01	1.00	0.50	0.52	0.53			
										-											
'	MM_A	0.15	0.04	0.07	0.15	0.08	0.03	0.12	0.18	0.13	-0.05	-0.04	-0.05	-0.03	0.50	1.00	0.19	0.26		0.2	
1	мм_L —	-0.09	0.19	-0.08	0.03	0.12	-0.10	-0.10	-0.05	-0.05	0.01	-0.03	-0.01	0.02	0.52	0.19	1.00	0.36			
	мм_р —	-0.28	0.23	-0.19	-0.09	0.29	-0.18	-0.25	-0.20	-0.20	0.09	-0.14	0.02	0.08	0.53	0.26	0.36	1.00			
	-																			L _0.4	

Ramin Fahimi University of Manitoba

Saliency and Scanpaths

20 Nov 2018 59 / 62

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			•

	EUC	MAN	EYE	LEV	SMT	HAU	FRE	DTW	TDE	REC	DET	LAM	CORM	MM_S	MM_A	MM_L	MM_P
AIM	593.92	22.19	116.54	11.61	0.58	158.59	273.56	1444.21	86.60	0.35	0.00	0.20	19.86	0.77	0.42	0.76	0.66
AWS	593.23	23.72	109.86	11.38	0.58	161.36	271.98	1407.45	85.77	0.57	0.00	0.43	18.85	0.76	0.41	0.75	0.66
CAS	532.63	21.02	112.93	11.50	0.58	152.50	242.07	1312.11	75.73	0.44	0.00	0.16	20.11	0.78	0.41	0.78	0.68
CVS	659.01	52.73	170.68	12.43	0.57	213.22	304.00	1735.46	100.06	0.16	0.00	0.06	22.62	0.77	0.43	0.75	0.65
DVA	615.52	27.60	121.59	11.84	0.58	166.80	280.03	1491.45	89.73	0.35	0.00	0.26	18.96	0.76	0.42	0.75	0.65
GBVS	487.70	7.35	100.39	11.13	0.58	130.77	215.79	1176.68	69.77	0.74	0.00	0.33	19.59	0.79	0.42	0.79	0.70
IKN	550.60	16.57	114.01	11.49	0.58	151.81	250.14	1347.33	80.05	0.43	0.00	0.21	19.38	0.77	0.42	0.77	0.67
IMSIG	562.50	23.95	110.11	11.38	0.58	152.12	258.72	1346.12	77.43	0.60	0.00	0.28	19.04	0.77	0.41	0.76	0.66
QSS	672.74	40.35	143.32	12.11	0.57	203.34	312.80	1675.07	103.47	0.27	0.00	0.13	19.73	0.76	0.42	0.75	0.65
SSR	639.80	32.53	132.01	11.83	0.58	176.81	295.52	1558.77	92.35	0.41	0.00	0.17	19.93	0.77	0.42	0.76	0.66
SUN	613.25	30.00	128.63	11.89	0.58	172.51	281.01	1506.95	90.78	0.28	0.00	0.22	19.68	0.77	0.43	0.75	0.65
cG	425.96	25.20	124.23	11.30	0.59	153.05	186.99	1147.19	60.49	0.39	0.00	0.10	22.07	0.77	0.21	0.70	0.73
SAM-VGG	502.56	6.08	66.11	10.20	0.58	96.95	227.88	1052.29	68.58	0.64	0.00	1.07	16.90	0.78	0.43	0.77	0.70
opensalicon	493.05	2.53	75.73	10.35	0.58	105.61	227.40	1064.80	66.15	0.81	0.00	0.72	16.81	0.77	0.41	0.76	0.68
salgan	815.41	69.93	158.61	11.96	0.59	337.08	436.59	2054.97	144.33	0.50	0.00	0.78	16.77	0.75	0.43	0.73	0.66
pathgan	878.71	165.25	330.67	13.88	0.55	327.80	408.63	2598.86	128.85	0.00	0.06	1.42	19.95	0.57	0.21	0.48	0.46

TABLE 9 - The benchmark - SPP results

Introduction	Background	Sequential analysis	Applications	Conclusion	References	
	000	000			•	

Time	EUC	MAN	EYE	LEV	SMT	HAU	FRE	DTW	TDE	REC	DET	LAM	CORM	MM_S	MM_A	MM_L	MM_P
600	216.10	52.81	166.30	4.18	0.42	188.70	217.59	420.02	26.95	24.41	0.97	13.87	80.40	0.89	0.57	0.89	0.88
800	290.85	49.15	155.68	5.50	0.42	203.50	248.20	575.89	65.88	23.06	2.33	17.28	62.87	0.87	0.56	0.88	0.86
1000	358.09	46.80	144.83	6.81	0.43	209.60	268.46	726.90	82.44	21.68	3.35	18.97	53.28	0.86	0.56	0.88	0.85
1200	422.14	45.17	135.30	8.10	0.43	212.52	285.75	874.13	85.51	20.20	4.07	19.85	47.69	0.86	0.58	0.88	0.84
1400	480.79	44.11	127.39	9.32	0.43	212.85	299.27	1019.08	84.85	19.01	4.61	20.53	44.33	0.85	0.60	0.88	0.84
1600	528.57	43.72	121.09	10.35	0.43	211.13	307.42	1137.91	83.39	18.05	5.02	21.01	42.37	0.86	0.62	0.89	0.83
1800	559.07	43.52	117.55	11.01	0.43	209.98	312.34	1214.99	82.16	17.45	5.24	21.26	41.31	0.86	0.63	0.89	0.83
2000	569.69	43.45	116.50	11.20	0.43	209.56	313.70	1236.92	81.83	17.21	5.30	21.31	40.99	0.86	0.64	0.89	0.83
2200	570.96	43.49	116.40	11.23	0.43	209.51	313.91	1239.15	81.79	17.18	5.31	21.31	40.94	0.86	0.64	0.89	0.83
2400	571.02	43.49	116.40	11.23	0.43	209.51	313.89	1239.25	81.79	17.18	5.31	21.31	40.94	0.86	0.64	0.89	0.83
2600	572.29	43.23	118.23	11.05	0.43	211.45	315.94	1230.42	83.50	17.22	5.26	20.75	41.47	0.86	0.63	0.88	0.83
2800	703.85	44.50	101.73	13.97	0.45	196.94	326.33	1559.30	76.91	24.34	8.02	26.48	39.39	0.86	0.69	0.89	0.83

TABLE 10 - Saliency in time - SPP results

Introduction	Background	Sequential analysis	Applications	Conclusion	References
	000	000			•

	EUC	MAN	EYE	LEV	SMT	HAU	FRE	DTW	TDE	REC	DET	LAM	CORM	MM_S	MM_A	MM_L	MM_P	MM_D
Affective	685.96	32.24	107.11	9.30	0.14	190.35	201.39	2712.41	53.60	6.11	5.57	9.82	17.03	0.04	0.17	0.06	0.06	0.19
BlackWhite	659.40	29.71	100.18	9.12	0.14	180.38	192.49	2524.98	52.31	5.90	5.53	10.07	18.35	0.04	0.16	0.06	0.06	0.19
Fractal	761.61	31.14	100.95	9.13	0.13	183.53	197.63	2613.20	56.01	6.08	5.47	10.30	19.26	0.04	0.16	0.06	0.06	0.18
Inverted	686.92	30.29	96.57	8.58	0.13	172.23	187.76	2431.32	52.90	4.75	5.31	10.08	19.64	0.03	0.14	0.05	0.06	0.18
Line Drawing	708.23	29.50	93.04	8.78	0.12	168.59	177.14	2491.01	54.75	6.06	5.26	10.37	20.35	0.03	0.14	0.05	0.06	0.18
Noisy	622.31	30.75	100.73	9.89	0.15	178.69	197.67	2421.20	58.80	8.56	5.64	10.92	20.08	0.04	0.18	0.06	0.06	0.20
Outdoor	683.76	30.95	96.43	9.06	0.14	184.42	198.42	2465.37	52.76	6.48	5.49	10.13	18.84	0.04	0.17	0.06	0.06	0.19
Pattern	653.08	31.71	105.42	9.80	0.14	180.26	195.58	2639.35	56.26	7.19	5.43	10.55	19.83	0.04	0.16	0.06	0.06	0.19
Satellite	719.24	32.91	106.05	8.91	0.14	185.62	203.48	2628.73	58.27	5.88	5.42	10.58	19.64	0.04	0.16	0.06	0.06	0.19
Social	712.32	30.71	96.41	9.39	0.14	180.79	205.10	2691.31	49.06	6.68	5.71	9.85	17.33	0.04	0.18	0.05	0.06	0.19

TABLE 11 - Standard deviation of Inter observer distances per category for CAT2000